Revision as of 02:13, 19 January 2024 by Admin (Created page with "For a fully discrete 10 -payment whole life insurance of <math>H</math> on (45), you are given: (i) Expenses payable at the beginning of each year are as follows: {| class="table table-bordered" ! Expense Type !! First Year !! Years 2-10 !! Years 11+ |- | Per policy || 100 || 20 || 10 |- | <math>\%</math> of Premium || <math>105 \%</math> || <math>5 \%</math> || <math>0 \%</math> |} (ii) Mortality follows the Standard Ultimate Life Table (iii) <math>i=0.05</math> (i...")
ABy Admin
Jan 19'24
Exercise
For a fully discrete 10 -payment whole life insurance of [math]H[/math] on (45), you are given:
(i) Expenses payable at the beginning of each year are as follows:
Expense Type | First Year | Years 2-10 | Years 11+ |
---|---|---|---|
Per policy | 100 | 20 | 10 |
[math]\%[/math] of Premium | [math]105 \%[/math] | [math]5 \%[/math] | [math]0 \%[/math] |
(ii) Mortality follows the Standard Ultimate Life Table
(iii) [math]i=0.05[/math]
(iv) The gross annual premium, calculated using the equivalence principle, is of the form [math]G=g H+f[/math], where [math]g[/math] is the premium rate per 1 of insurance and [math]f[/math] is the per policy fee
Calculate [math]f[/math].
- 42.00
- 44.20
- 46.40
- 48.60
- 50.80
ABy Admin
Jan 19'24
Answer: E
[[math]]
\begin{aligned}
& G \ddot{a}_{45: \overline{10}}=H A_{45}+G+0.05 G \ddot{a}_{45: \overline{10}}+80+10 \ddot{a}_{45}+10 \ddot{a}_{45: 10} \\
& G=\frac{H A_{45}+80+10\left(\ddot{a}_{45}+\ddot{a}_{45: 10 \mid}\right)}{0.95 \ddot{a}_{45: 10}-1} \\
& G=\frac{H A_{45}+80+10(17.8162+8.0751)}{(0.95 \times 8.0751)-1} \\
& G=\frac{A_{45}}{(0.95 \times 8.0751)-1} H+\frac{80+10(17.8162+8.0751)}{(0.95 \times 8.0751)-1} \\
& g=\frac{A_{45}}{(0.95 \times 8.0751)-1} \\
& f=\frac{80+10(17.8162+8.0751)}{(0.95 \times 8.0751)-1}=50.80
\end{aligned}
[[/math]]