Exercise
For a fully discrete whole life insurance of 200,000 on (45), you are given:
(i) Mortality follows the Standard Ultimate Life Table.
(ii) [math]\quad i=0.05[/math]
(iii) The annual premium is determined using the equivalence principle.
Calculate the standard deviation of [math]L_{0}[/math], the present value random variable for the loss at issue.
- 25,440
- 30,440
- 35,440
- 40,440
- 45,440
Answer: A
On a unit basis, [math]\operatorname{Var}\left(L_{0}\right)=\left(1+\frac{P}{d}\right)^{2}\left[{ }^{2} A_{45}-\left(A_{45}\right)^{2}\right]=\left(1+\frac{A_{45}}{d \ddot{a}_{45}}\right)^{2}\left[{ }^{2} A_{45}-\left(A_{45}\right)^{2}\right][/math]
[math]=\left(\frac{d \ddot{a}_{45}+1-d \ddot{a}_{45}}{d \ddot{a}_{45}}\right)^{2}\left[{ }^{2} A_{45}-\left(A_{45}\right)^{2}\right]=\frac{{ }^{2} A_{45}-\left(A_{45}\right)^{2}}{(d \ddot{a})^{2}}[/math]
[math]=\frac{0.03463-0.15161^{2}}{\left(\frac{0.05}{1.05} \times 17.8162\right)^{2}}=0.016178038[/math]
The standard deviation of [math]L_{0}=0.127193[/math]
[math](200,000)\left(\right.[/math] The standard deviation of [math]\left.L_{0}\right)=25,439[/math]