Revision as of 20:04, 19 January 2024 by Admin (Created page with "'''Answer: C''' Let <math>C</math> be the annual contribution, then <math>C=\frac{{ }_{20} E_{45} \ddot{a}_{65}}{\ddot{a}_{45: 20}}</math> Let <math>K_{65}</math> be the curtate future lifetime of (65). The required probability is <math display="block"> \operatorname{Pr}\left(\frac{C \ddot{a}_{45: 20}}{{ }_{20} E_{45}}>\ddot{a}_{\overline{K_{65}+1}}\right)=\operatorname{Pr}\left(\frac{{ }_{20} E_{45} \ddot{a}_{65}}{\ddot{a}_{45: 20}} \frac{\ddot{a}_{45: 20}}{{ }_{20}...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Jan 19'24

Answer

Answer: C

Let [math]C[/math] be the annual contribution, then [math]C=\frac{{ }_{20} E_{45} \ddot{a}_{65}}{\ddot{a}_{45: 20}}[/math]

Let [math]K_{65}[/math] be the curtate future lifetime of (65). The required probability is

[[math]] \operatorname{Pr}\left(\frac{C \ddot{a}_{45: 20}}{{ }_{20} E_{45}}\gt\ddot{a}_{\overline{K_{65}+1}}\right)=\operatorname{Pr}\left(\frac{{ }_{20} E_{45} \ddot{a}_{65}}{\ddot{a}_{45: 20}} \frac{\ddot{a}_{45: 20}}{{ }_{20} E_{45}}\gt\ddot{a}_{\overline{K_{65}+1}}\right)=\operatorname{Pr}\left(\ddot{a}_{65}\gt\ddot{a}_{\overline{K_{65}+1}}\right)=\operatorname{Pr}\left(13.5498\gt\ddot{a}_{\overline{K_{65}+1}}\right) [[/math]]


Thus, since [math]\ddot{a}_{\overline{21}}=13.4622[/math] and [math]\ddot{a}_{\overline{22}}=13.8212[/math] we have

[[math]] \operatorname{Pr}\left(\ddot{a}_{K_{65}+1}\lt13.5498\right)=\operatorname{Pr}\left(K_{65}+1 \leq 21\right)=1-_{21} p_{65}=1-\frac{l_{86}}{l_{65}}=1-\frac{57,656.7}{94,579.7}=0.390 [[/math]]


Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00