Revision as of 20:39, 19 January 2024 by Admin (Created page with "'''Answer: C''' For calculating <math>P</math> <math>A_{50}=v q_{50}+v p_{50} A_{51}=v(0.0048)+v(1-0.0048)(0.39788)=0.38536</math> <math>\ddot{a}_{50}=\left(1-A_{50}\right) / d=15.981</math> <math>P=A_{50} / \ddot{a}_{50}=0.02411</math> For this particular life, <math>A_{50}^{\prime}=v q_{50}^{\prime}+v p_{50}^{\prime} A_{51}=v(0.048)+(1-0.048)(0.39788)=0.41037</math> <math>\ddot{a}_{50}^{\prime}=\left(1-A_{50}^{\prime}\right) / d=15.330</math> Expected PV of los...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Jan 19'24

Answer

Answer: C

For calculating [math]P[/math]

[math]A_{50}=v q_{50}+v p_{50} A_{51}=v(0.0048)+v(1-0.0048)(0.39788)=0.38536[/math]

[math]\ddot{a}_{50}=\left(1-A_{50}\right) / d=15.981[/math]

[math]P=A_{50} / \ddot{a}_{50}=0.02411[/math]

For this particular life,

[math]A_{50}^{\prime}=v q_{50}^{\prime}+v p_{50}^{\prime} A_{51}=v(0.048)+(1-0.048)(0.39788)=0.41037[/math]

[math]\ddot{a}_{50}^{\prime}=\left(1-A_{50}^{\prime}\right) / d=15.330[/math]

Expected PV of loss [math]=A_{50}^{\prime}-P \ddot{a}_{50}^{\prime}=0.41037-0.02411(15.330)=0.0408[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00