Revision as of 20:49, 19 January 2024 by Admin (Created page with "'''Answer: D''' <math>100,000 A_{40}=P\left[\ddot{a}_{40: \overline{10}}+0.5_{10} \ddot{a}_{40: \overline{10}}\right]</math> <math>P=\frac{100,000 A_{40}}{\ddot{a}_{40: \overline{10}}+0.5_{10 \mid} \ddot{a}_{40: 10}}=\frac{100,000(0.12106)}{8.0863+0.5(4.9071)}=\frac{12,106}{10.53985}=1148.59</math> where <math>{ }_{10} \ddot{a}_{40: 10}={ }_{10} E_{40}\left[\ddot{a}_{50: 10}\right]=0.60920[8.0550]=4.9071</math> There are several other ways to write the right-hand si...")
Exercise
ABy Admin
Jan 19'24
Answer
Answer: D
[math]100,000 A_{40}=P\left[\ddot{a}_{40: \overline{10}}+0.5_{10} \ddot{a}_{40: \overline{10}}\right][/math]
[math]P=\frac{100,000 A_{40}}{\ddot{a}_{40: \overline{10}}+0.5_{10 \mid} \ddot{a}_{40: 10}}=\frac{100,000(0.12106)}{8.0863+0.5(4.9071)}=\frac{12,106}{10.53985}=1148.59[/math]
where
[math]{ }_{10} \ddot{a}_{40: 10}={ }_{10} E_{40}\left[\ddot{a}_{50: 10}\right]=0.60920[8.0550]=4.9071[/math]
There are several other ways to write the right-hand side of the first equation.