Revision as of 20:51, 19 January 2024 by Admin (Created page with "'''Answer: B''' Woolhouse: <math>\quad{ }^{W} \ddot{a}_{x}^{(4)}=3.4611-\frac{3}{8}=3.0861</math> <math display="block"> \begin{aligned} & { }^{U D D} \ddot{a}_{x}^{(4)}=\alpha(4) \ddot{a}_{x}-\beta(4) \\ & =1.00019(3.4611)-0.38272 \\ & =3.0790 \end{aligned} </math> and <math display="block"> A_{x}=1-d \ddot{a}_{x}=1-(0.04762)(3.4611)=0.83518 </math> <math>P^{(W)}=\frac{1000(0.83518)}{3.0861}=270.63</math> <math>P^{(U D D)}=\frac{1000(0.83518)}{3.0790}=271.25...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Jan 19'24

Answer

Answer: B

Woolhouse: [math]\quad{ }^{W} \ddot{a}_{x}^{(4)}=3.4611-\frac{3}{8}=3.0861[/math]

[[math]] \begin{aligned} & { }^{U D D} \ddot{a}_{x}^{(4)}=\alpha(4) \ddot{a}_{x}-\beta(4) \\ & =1.00019(3.4611)-0.38272 \\ & =3.0790 \end{aligned} [[/math]]


and

[[math]] A_{x}=1-d \ddot{a}_{x}=1-(0.04762)(3.4611)=0.83518 [[/math]]


[math]P^{(W)}=\frac{1000(0.83518)}{3.0861}=270.63[/math]

[math]P^{(U D D)}=\frac{1000(0.83518)}{3.0790}=271.25[/math]

[math]\frac{P^{(U D D)}}{P^{(W)}}=\frac{271.25}{270.63}=1.0023[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00