Revision as of 20:51, 19 January 2024 by Admin (Created page with "'''Answer: B''' Woolhouse: <math>\quad{ }^{W} \ddot{a}_{x}^{(4)}=3.4611-\frac{3}{8}=3.0861</math> <math display="block"> \begin{aligned} & { }^{U D D} \ddot{a}_{x}^{(4)}=\alpha(4) \ddot{a}_{x}-\beta(4) \\ & =1.00019(3.4611)-0.38272 \\ & =3.0790 \end{aligned} </math> and <math display="block"> A_{x}=1-d \ddot{a}_{x}=1-(0.04762)(3.4611)=0.83518 </math> <math>P^{(W)}=\frac{1000(0.83518)}{3.0861}=270.63</math> <math>P^{(U D D)}=\frac{1000(0.83518)}{3.0790}=271.25...")
Exercise
ABy Admin
Jan 19'24
Answer
Answer: B
Woolhouse: [math]\quad{ }^{W} \ddot{a}_{x}^{(4)}=3.4611-\frac{3}{8}=3.0861[/math]
[[math]]
\begin{aligned}
& { }^{U D D} \ddot{a}_{x}^{(4)}=\alpha(4) \ddot{a}_{x}-\beta(4) \\
& =1.00019(3.4611)-0.38272 \\
& =3.0790
\end{aligned}
[[/math]]
and
[[math]]
A_{x}=1-d \ddot{a}_{x}=1-(0.04762)(3.4611)=0.83518
[[/math]]
[math]P^{(W)}=\frac{1000(0.83518)}{3.0861}=270.63[/math]
[math]P^{(U D D)}=\frac{1000(0.83518)}{3.0790}=271.25[/math]
[math]\frac{P^{(U D D)}}{P^{(W)}}=\frac{271.25}{270.63}=1.0023[/math]