Revision as of 21:08, 19 January 2024 by Admin (Created page with "'''Answer: C''' <math>P \times \ddot{a}_{75: 15 \mid}=1000\left(A_{75: 15 \mid}^{1}+15 \times P \times A_{75: 15}\right) \rightarrow P=\frac{1000 A_{75: 15}^{1}}{\ddot{a}_{75: 15 \mid}-15 \times A_{75: 15}}</math> <math>A_{75: 15}^{1}=A_{75: 15}-A_{75: 15}=0.7-0.11=0.59</math> <math>\ddot{a}_{75: 15 \mid}=\frac{1-A_{75: 15 \mid}}{d}=(1-0.7) / 0.04=7.5</math> So <math>P=\frac{590}{7.5-15(0.11)}=100.85</math> {{soacopyright|2024}}")
Exercise
ABy Admin
Jan 19'24
Answer
Answer: C
[math]P \times \ddot{a}_{75: 15 \mid}=1000\left(A_{75: 15 \mid}^{1}+15 \times P \times A_{75: 15}\right) \rightarrow P=\frac{1000 A_{75: 15}^{1}}{\ddot{a}_{75: 15 \mid}-15 \times A_{75: 15}}[/math]
[math]A_{75: 15}^{1}=A_{75: 15}-A_{75: 15}=0.7-0.11=0.59[/math]
[math]\ddot{a}_{75: 15 \mid}=\frac{1-A_{75: 15 \mid}}{d}=(1-0.7) / 0.04=7.5[/math]
So [math]P=\frac{590}{7.5-15(0.11)}=100.85[/math]