Revision as of 21:18, 19 January 2024 by Admin (Created page with "'''Answer: C''' Need <math>\operatorname{EPV}(</math> Ben <math>+\operatorname{Exp})-\operatorname{EPV}(</math> Prem <math>)=-800</math> <math>\operatorname{EPV}(</math> Prem <math>)=G \ddot{a}_{55: 10}=8.0192 G</math> <math display="block"> \begin{aligned} \operatorname{EPV}(\operatorname{Ben}+\operatorname{Exp}) & =12,000{ }_{10} \ddot{a}_{55}^{(12)}+300 \ddot{a}_{55} \\ & =12,000_{10} E_{55} \ddot{a}_{65}^{(12)}+300 \ddot{a}_{55} \\ & =12,000_{10} E_{55}\left(\ddo...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Jan 19'24

Answer

Answer: C

Need [math]\operatorname{EPV}([/math] Ben [math]+\operatorname{Exp})-\operatorname{EPV}([/math] Prem [math])=-800[/math]

[math]\operatorname{EPV}([/math] Prem [math])=G \ddot{a}_{55: 10}=8.0192 G[/math]

[[math]] \begin{aligned} \operatorname{EPV}(\operatorname{Ben}+\operatorname{Exp}) & =12,000{ }_{10} \ddot{a}_{55}^{(12)}+300 \ddot{a}_{55} \\ & =12,000_{10} E_{55} \ddot{a}_{65}^{(12)}+300 \ddot{a}_{55} \\ & =12,000_{10} E_{55}\left(\ddot{a}_{65}-\frac{m-1}{2 m}\right)+300 \ddot{a}_{55} \\ & =12,000(0.59342)(13.5498-11 / 24)+300(16.0599) \\ & =98,042.83 \end{aligned} [[/math]]


Therefore, [math]\quad 98,042.83-8.0192 G=-800[/math]

[[math]] G=12,326 [[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00