Revision as of 21:28, 19 January 2024 by Admin (Created page with "'''Answer: A''' The loss at issue is given by: <math>L_{0}=100 v^{K+1}+0.05 G+0.05 G \ddot{a}_{\overline{K+1}}-G \ddot{a}_{\overline{K+1}}</math> <math>=100 v^{K+1}+0.05 G-0.95 G\left(\frac{1-v^{K+1}}{d}\right)</math> <math>=\left(100+\frac{0.95 G}{d}\right) v^{K+1}+0.05 G-0.95 \frac{G}{d}</math> Thus, the variance is <math display="block"> \begin{aligned} \operatorname{Var}\left(L_{0}\right)=[100 & \left.+\frac{0.95(2.338)}{0.04 / 1.04}\right]^{2}\left({ }^{2} A_...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Jan 19'24

Answer

Answer: A

The loss at issue is given by:

[math]L_{0}=100 v^{K+1}+0.05 G+0.05 G \ddot{a}_{\overline{K+1}}-G \ddot{a}_{\overline{K+1}}[/math]

[math]=100 v^{K+1}+0.05 G-0.95 G\left(\frac{1-v^{K+1}}{d}\right)[/math]

[math]=\left(100+\frac{0.95 G}{d}\right) v^{K+1}+0.05 G-0.95 \frac{G}{d}[/math]

Thus, the variance is

[[math]] \begin{aligned} \operatorname{Var}\left(L_{0}\right)=[100 & \left.+\frac{0.95(2.338)}{0.04 / 1.04}\right]^{2}\left({ }^{2} A_{x}-\left(A_{x}\right)^{2}\right) \\ & =\left[100+\frac{0.95(2.338)}{0.04 / 1.04}\right]^{2}\left(0.17-\left(1-\frac{0.04}{1.04}(16.50)\right)^{2}\right) \\ & =908.1414 \end{aligned} [[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00