Revision as of 21:30, 19 January 2024 by Admin (Created page with "'''Answer: D''' <math>\bar{A}_{35}=\left(1-e^{-35(\mu+\delta)}\right) \times\left(\frac{\mu}{\mu+\delta}\right)+e^{-35(\mu+\delta)} \bar{A}_{70}=0.063421+0.146257=0.209679</math> <math>\bar{a}_{35}=\frac{1-\bar{A}_{35}}{\delta}=\frac{1-0.209679}{0.05}=15.80642</math> <math>\bar{P}_{35}=\frac{\bar{A}_{35}}{\bar{a}_{35}}=\frac{0.209679}{15.80642}=0.0132654</math> The annual net premium for this policy is therefore <math>100,000 \times 0.0132654=1,326.54</math> {{soaco...")
Exercise
ABy Admin
Jan 19'24
Answer
Answer: D
[math]\bar{A}_{35}=\left(1-e^{-35(\mu+\delta)}\right) \times\left(\frac{\mu}{\mu+\delta}\right)+e^{-35(\mu+\delta)} \bar{A}_{70}=0.063421+0.146257=0.209679[/math]
[math]\bar{a}_{35}=\frac{1-\bar{A}_{35}}{\delta}=\frac{1-0.209679}{0.05}=15.80642[/math]
[math]\bar{P}_{35}=\frac{\bar{A}_{35}}{\bar{a}_{35}}=\frac{0.209679}{15.80642}=0.0132654[/math]
The annual net premium for this policy is therefore [math]100,000 \times 0.0132654=1,326.54[/math]