Revision as of 21:35, 19 January 2024 by Admin (Created page with "'''Answer: D''' Let <math>G</math> be the annual gross premium. By the equivalence principle, we have <math>G \ddot{a}_{35}=100,000 A_{35}+0.15 G+0.04 G \ddot{a}_{35}</math> so that <math display="block"> G=\frac{100,000 A_{35}}{0.96 \ddot{a}_{35}-0.15}=\frac{100,000(0.09653)}{0.96(18.9728)-0.15}=534.38 </math> {{soacopyright|2024}}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Jan 19'24

Answer

Answer: D

Let [math]G[/math] be the annual gross premium. By the equivalence principle, we have [math]G \ddot{a}_{35}=100,000 A_{35}+0.15 G+0.04 G \ddot{a}_{35}[/math]

so that

[[math]] G=\frac{100,000 A_{35}}{0.96 \ddot{a}_{35}-0.15}=\frac{100,000(0.09653)}{0.96(18.9728)-0.15}=534.38 [[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00