Revision as of 21:43, 19 January 2024 by Admin (Created page with "'''Answer: B''' Let <math>P</math> be the net premium for year 1 . Then: <math display="block"> \begin{aligned} & P+1.01 P v p_{x}=100,000 v q_{x}+(1.01)(100,000) v^{2} p_{x} q_{x+1} \\ & P\left[1+\frac{1.01}{1.05} 0.99\right]=100,000\left(\frac{0.01}{1.05}+\frac{(1.01)(0.99)(0.02)}{(1.05)^{2}}\right) \Rightarrow P=1416.93 \end{aligned} </math> {{soacopyright|2024}}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Jan 19'24

Answer

Answer: B

Let [math]P[/math] be the net premium for year 1 .

Then:

[[math]] \begin{aligned} & P+1.01 P v p_{x}=100,000 v q_{x}+(1.01)(100,000) v^{2} p_{x} q_{x+1} \\ & P\left[1+\frac{1.01}{1.05} 0.99\right]=100,000\left(\frac{0.01}{1.05}+\frac{(1.01)(0.99)(0.02)}{(1.05)^{2}}\right) \Rightarrow P=1416.93 \end{aligned} [[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00