Revision as of 23:27, 19 January 2024 by Admin (Created page with "'''Answer: D''' Under the Equivalence Principle <math>P \ddot{a}_{62: 101}=50,000\left(\ddot{a}_{62}-\ddot{a}_{62: 10}\right)+P\left((I A)_{62: 100}^{1}\right)</math> where <math>(I A)_{62: 10 \mid}^{1}=11 A_{62: 10 \mid}^{1}-\sum_{k=1}^{10} A_{62: k \mid}^{1}=11(0.091)-0.4891=0.5119</math> So <math>\quad P=\frac{50,000\left(\ddot{a}_{62}-\ddot{a}_{62: 10}\right)}{\ddot{a}_{62: 10 \mid}-(I A)_{62: 100}^{1}}=\frac{50,000(12.2758-7.4574)}{7.4574-0.5119}=34,687</math>...")
Exercise
ABy Admin
Jan 19'24
Answer
Answer: D
Under the Equivalence Principle
[math]P \ddot{a}_{62: 101}=50,000\left(\ddot{a}_{62}-\ddot{a}_{62: 10}\right)+P\left((I A)_{62: 100}^{1}\right)[/math]
where [math](I A)_{62: 10 \mid}^{1}=11 A_{62: 10 \mid}^{1}-\sum_{k=1}^{10} A_{62: k \mid}^{1}=11(0.091)-0.4891=0.5119[/math]
So [math]\quad P=\frac{50,000\left(\ddot{a}_{62}-\ddot{a}_{62: 10}\right)}{\ddot{a}_{62: 10 \mid}-(I A)_{62: 100}^{1}}=\frac{50,000(12.2758-7.4574)}{7.4574-0.5119}=34,687[/math]