Revision as of 23:28, 19 January 2024 by Admin (Created page with "'''Answer: E''' <math display="block"> \begin{aligned} & G \ddot{a}_{45: \overline{10}}=H A_{45}+G+0.05 G \ddot{a}_{45: \overline{10}}+80+10 \ddot{a}_{45}+10 \ddot{a}_{45: 10} \\ & G=\frac{H A_{45}+80+10\left(\ddot{a}_{45}+\ddot{a}_{45: 10 \mid}\right)}{0.95 \ddot{a}_{45: 10}-1} \\ & G=\frac{H A_{45}+80+10(17.8162+8.0751)}{(0.95 \times 8.0751)-1} \\ & G=\frac{A_{45}}{(0.95 \times 8.0751)-1} H+\frac{80+10(17.8162+8.0751)}{(0.95 \times 8.0751)-1} \\ & g=\frac{A_{45}}{(0....")
Exercise
ABy Admin
Jan 19'24
Answer
Answer: E
[[math]]
\begin{aligned}
& G \ddot{a}_{45: \overline{10}}=H A_{45}+G+0.05 G \ddot{a}_{45: \overline{10}}+80+10 \ddot{a}_{45}+10 \ddot{a}_{45: 10} \\
& G=\frac{H A_{45}+80+10\left(\ddot{a}_{45}+\ddot{a}_{45: 10 \mid}\right)}{0.95 \ddot{a}_{45: 10}-1} \\
& G=\frac{H A_{45}+80+10(17.8162+8.0751)}{(0.95 \times 8.0751)-1} \\
& G=\frac{A_{45}}{(0.95 \times 8.0751)-1} H+\frac{80+10(17.8162+8.0751)}{(0.95 \times 8.0751)-1} \\
& g=\frac{A_{45}}{(0.95 \times 8.0751)-1} \\
& f=\frac{80+10(17.8162+8.0751)}{(0.95 \times 8.0751)-1}=50.80
\end{aligned}
[[/math]]