Revision as of 23:31, 19 January 2024 by Admin (Created page with "'''Answer: D''' EPV(benefits <math>)=1000 \times A_{45: 20 \mid}^{1}+2500 \times{ }_{20} \ddot{a}_{45}</math> <math display="block"> =1000(0.15161-0.35994 \times 0.35477)+2500 \times 0.35994 \times 13.5498=12,216.7 </math> <math>\mathrm{EPV}(</math> premiums <math>)=P \times(17.8161-0.35994 \times 13.5498)=P \times 12.9391</math> <math display="block"> P=\frac{12216.7}{12.9391}=944.17 </math> {{soacopyright|2024}}")
Exercise
ABy Admin
Jan 19'24
Answer
Answer: D
EPV(benefits [math])=1000 \times A_{45: 20 \mid}^{1}+2500 \times{ }_{20} \ddot{a}_{45}[/math]
[[math]]
=1000(0.15161-0.35994 \times 0.35477)+2500 \times 0.35994 \times 13.5498=12,216.7
[[/math]]
[math]\mathrm{EPV}([/math] premiums [math])=P \times(17.8161-0.35994 \times 13.5498)=P \times 12.9391[/math]
[[math]]
P=\frac{12216.7}{12.9391}=944.17
[[/math]]