Revision as of 23:38, 19 January 2024 by Admin (Created page with "'''Answer: D''' <math display="block"> \begin{aligned} & A_{35: 20}=0.37981 \\ & \ddot{a}_{35: \overline{20}}=13.0240 \end{aligned} </math> APV of Premium <math>=</math> APV of Benefits + APV of Expenses APV of Benefits + APV of Expenses = <math>1,000,000 \times A_{35: \overline{20}}+50 \times \ddot{a}_{35: \overline{20}}+100=380,561.20</math> APV of Premium - APV of % Expenses <math>=(0.95) \times P \times \ddot{a}_{35: 20 \mid}-(0.5) \times P=11.8728 \times P \i...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Jan 19'24

Answer

Answer: D

[[math]] \begin{aligned} & A_{35: 20}=0.37981 \\ & \ddot{a}_{35: \overline{20}}=13.0240 \end{aligned} [[/math]]


APV of Premium [math]=[/math] APV of Benefits + APV of Expenses

APV of Benefits + APV of Expenses = [math]1,000,000 \times A_{35: \overline{20}}+50 \times \ddot{a}_{35: \overline{20}}+100=380,561.20[/math]

APV of Premium - APV of % Expenses [math]=(0.95) \times P \times \ddot{a}_{35: 20 \mid}-(0.5) \times P=11.8728 \times P \implies P=\frac{380,561.20}{11.8728}=32,053.20[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00