Revision as of 01:08, 20 January 2024 by Admin (Created page with "A special fully discrete 2 -year endowment insurance with a maturity value of 2000 is issued to (x). The death benefit is 2000 plus the net premium policy value at the end of the year of death. For year 2, the net premium policy value is the net premium policy value just before the maturity benefit is paid. You are given: (i) <math>\quad i=0.10</math> (ii) <math>\quad q_{x}=0.150</math> and <math>q_{x+1}=0.165</math> Calculate the level annual net premium. <ul class...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
ABy Admin
Jan 20'24

Exercise

A special fully discrete 2 -year endowment insurance with a maturity value of 2000 is issued to (x). The death benefit is 2000 plus the net premium policy value at the end of the year of death. For year 2, the net premium policy value is the net premium policy value just before the maturity benefit is paid.

You are given:

(i) [math]\quad i=0.10[/math]

(ii) [math]\quad q_{x}=0.150[/math] and [math]q_{x+1}=0.165[/math]

Calculate the level annual net premium.

  • 1070
  • 1110
  • 1150
  • 1190
  • 1230

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
Jan 20'24

Answer: C

[math]{ }_{0} V=0[/math]

[math]{ }_{2} V=2000[/math]

Year 1: [math]\quad\left({ }_{0} V+P\right)(1+i)=q_{x}\left(2000+{ }_{1} V\right)+p_{x 1} V[/math]


[[math]] P(1.1)=0.15\left(2000+{ }_{1} V\right)+0.85\left({ }_{1} V\right) [[/math]]

[[math]] 1.1 P-300={ }_{1} V [[/math]]


Year 2: [math]\quad\left({ }_{1} V+P\right)(1+i)=q_{x+1}\left(2000+{ }_{2} V\right)+p_{x+1}(2000)[/math]


[[math]] \begin{aligned} & (1.1 P-300+P)(1.1)=0.165(2000+2000)+0.835(2000) \\ & 2.31 P-330=2330 \\ & P=\frac{2330+330}{2.31}=1152 \end{aligned} [[/math]]


Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00