Revision as of 01:09, 20 January 2024 by Admin (Created page with "For a whole life insurance of 1000 with semi-annual premiums on (80), you are given: (i) A gross premium of 60 is payable every 6 months starting at age 80 (ii) Commissions of <math>10 \%</math> are paid each time a premium is paid (iii) Death benefits are paid at the end of the quarter of death (iv) <math>{ }_{t} V</math> denotes the gross premium policy value at time <math>t, t \geq 0</math> (v) <math>\quad{ }_{10.75} V=753.72</math> (vi) {| class="table table-b...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
ABy Admin
Jan 20'24

Exercise

For a whole life insurance of 1000 with semi-annual premiums on (80), you are given:

(i) A gross premium of 60 is payable every 6 months starting at age 80

(ii) Commissions of [math]10 \%[/math] are paid each time a premium is paid

(iii) Death benefits are paid at the end of the quarter of death

(iv) [math]{ }_{t} V[/math] denotes the gross premium policy value at time [math]t, t \geq 0[/math]

(v) [math]\quad{ }_{10.75} V=753.72[/math]

(vi)

[math]t[/math] [math]l_{90+t}[/math]
0 1000
0.25 898
0.50 800
0.75 706

(vii) [math]i^{(4)}=0.08[/math]

Calculate [math]{ }_{10.25} \mathrm{~V}[/math].

  • 680
  • 690
  • 700
  • 710
  • 730

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
Jan 20'24

Answer: E

[math]i^{(4)}=0.08[/math] means an interest rate of [math]j=0.02[/math] per quarter. This problem can be done with two quarterly recursions or a single calculation.

Using two recursions:

[math]{ }_{10.75} V=\frac{\left[{ }_{10.5} V+60(1-0.1)\right](1.02)-\frac{800-706}{800}(1000)}{\frac{706}{800}}[/math]

[math]753.72=\frac{\left[{ }_{10.5} V+54\right](1.02)-117.50}{0.8825} \Rightarrow_{10.5} V=713.31[/math]

[math]{ }_{10.5} V=\frac{\left[{ }_{10.25} V\right](1.02)-\frac{898-800}{898}(1000)}{\frac{800}{898}} \Rightarrow 713.31=\frac{\left[{ }_{10.25} V\right](1.02)-109.13}{0.8909}[/math]

[math]{ }_{10.25} V=730.02[/math]

Using a single step, [math]{ }_{10.25} V[/math] is the [math]E P V[/math] of cash flows through time 10.75 plus [math]{ }_{0.5} E_{80.25}[/math] times the [math]E P V[/math] of cash flows thereafter (that is, [math]{ }_{10.75} V[/math] ).

[math]{ }_{10.25} V=(1000)\left[\frac{898-800}{898(1.02)}+\frac{800-706}{898(1.02)^{2}}\right]-(60)(1-0.1)\left[\frac{800}{898(1.02)}\right]+\left[\frac{706}{898(1.02)^{2}}\right](753.72)=730[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00