Revision as of 01:36, 20 January 2024 by Admin (Created page with "For a fully discrete whole life insurance policy of <math>1,000,000</math> on (50), you are given: (i) The annual gross premium, calculated using the equivalence principle, is 11,800 (ii) Mortality follows the Standard Ultimate Life Table (iii) <math>\quad i=0.05</math> Calculate the expense loading, <math>P^{e}</math>, for this policy. <ul class="mw-excansopts"><li> 480</li><li> 580</li><li> 680</li><li> 780</li><li> 880</li></ul> {{soacopyright|2024}}")
ABy Admin
Jan 20'24
Exercise
For a fully discrete whole life insurance policy of [math]1,000,000[/math] on (50), you are given:
(i) The annual gross premium, calculated using the equivalence principle, is 11,800
(ii) Mortality follows the Standard Ultimate Life Table
(iii) [math]\quad i=0.05[/math]
Calculate the expense loading, [math]P^{e}[/math], for this policy.
- 480
- 580
- 680
- 780
- 880
ABy Admin
Jan 20'24
Answer: C
[math]P^{g}=P^{n}+P^{e} \quad[/math] where [math]P^{e}[/math] is the expense loading
[math]P^{n}=1,000,000 \frac{A_{50}}{\ddot{a}_{50}}=1,000,000\left(\frac{0.18931}{17.0245}\right)=11,119.86[/math]
[math]P^{e}=P^{g}-P^{n}=11,800-11,120=680[/math]