Revision as of 01:37, 20 January 2024 by Admin (Created page with "For a fully discrete whole life insurance policy of 100,000 on [55], a professional skydiver, you are given: (i) Level premiums are paid annually (ii) Mortality follows a 2-year select and ultimate table (iii) <math>\quad i=0.04</math> (iv) The following table of values for <math>A_{[x]+t}</math> : {| class="table table-bordered" ! <math>x</math> !! <math>A_{[x]}</math> !! <math>A_{[x]+1}</math> !! <math>A_{x+2}</math> |- | 55 || 0.23 || 0.24 || 0.25 |- | 56 || 0.25...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
ABy Admin
Jan 20'24

Exercise

For a fully discrete whole life insurance policy of 100,000 on [55], a professional skydiver, you are given:

(i) Level premiums are paid annually

(ii) Mortality follows a 2-year select and ultimate table

(iii) [math]\quad i=0.04[/math]

(iv) The following table of values for [math]A_{[x]+t}[/math] :

[math]x[/math] [math]A_{[x]}[/math] [math]A_{[x]+1}[/math] [math]A_{x+2}[/math]
55 0.23 0.24 0.25
56 0.25 0.26 0.27
57 0.27 0.28 0.29
58 0.29 0.30 0.31

Calculate the Full Preliminary Term reserve at time 3.

  • 2700
  • 3950
  • 5200
  • 6450
  • 7800

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
Jan 20'24

Answer: B

[[math]] \begin{aligned} & { }_{3} V^{F P T}=100,000 A_{[55]+3}-100,000 P_{[55]+1} \ddot{a}_{[55]+3} \\ & =100,000 A_{58}-100,000 \frac{A_{[55]+1}}{\ddot{a}_{[55]+1}} \ddot{a}_{58} \\ & =100,000\left(0.27-\frac{0.24}{\frac{1-0.24}{d}} \cdot \frac{1-0.27}{d}\right) \\ &= 3947.37 \end{aligned} [[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00