Exercise
For a special fully discrete whole life insurance of 1,000 on (45), you are given:
(i) The net premiums for year [math]k[/math] are:
(ii) Mortality follows the Standard Ultimate Life Table
(iii) [math]\quad i=0.05[/math]
(iv) [math]{ }_{20} V[/math], the net premium policy value at the end of the [math]20^{\text {th }}[/math] year, is 0
Calculate [math]W[/math].
- 12
- 16
- 20
- 24
- 28
Answer: D
[math]{ }_{20} V=0==\gt1000 A_{65}=(P+W) \times \ddot{a}_{65}[/math]
At issue, present value of benefits must equal present value of premium, so:
[math]1000 A_{45}=P \ddot{a}_{45}+W_{20} E_{45} \times \ddot{a}_{65}[/math]
[math]354.77=(P+W)(13.5498) \Rightarrow P+W=26.182674 \Rightarrow P=26.182674-W[/math]
[math]151.61=17.8162 P+W(0.35994)(13.5498)[/math]
[math]151.61=17.8162(26.182674-W)+W(0.35994)(13.5498)[/math]
[math]\Rightarrow W=24.33447[/math]