Revision as of 01:55, 20 January 2024 by Admin (Created page with "An insurer issues a 30-year term insurance policy on (40). You are given: i) Net premiums of 750 are payable quarterly ii) The death benefit, payable at the end of the quarter of death, is <math>1,000,000</math> iii) <math>{ }_{t} V</math> denotes the net premium policy value at time <math>t, t \geq 0</math> iv) <math>10.5^{V}=10,000</math> v) <math>q_{50}=0.01</math> vi) Mortality is uniformly distributed over each year of age vii) <math>i=0.05</math> Calculate <...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
ABy Admin
Jan 20'24

Exercise

An insurer issues a 30-year term insurance policy on (40). You are given:

i) Net premiums of 750 are payable quarterly

ii) The death benefit, payable at the end of the quarter of death, is [math]1,000,000[/math]

iii) [math]{ }_{t} V[/math] denotes the net premium policy value at time [math]t, t \geq 0[/math]

iv) [math]10.5^{V}=10,000[/math] v) [math]q_{50}=0.01[/math]

vi) Mortality is uniformly distributed over each year of age

vii) [math]i=0.05[/math]

Calculate [math]{ }_{10.75} V[/math].

  • 8,360
  • 8,370
  • 8,380
  • 8,390
  • 8,400

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
Jan 20'24

Answer: D


[[math]] \begin{aligned} & \left({ }_{10.5} V+P\right)(1+i)^{0.25}=1,000,000 \times{ }_{0.25} q_{50.5}+{ }_{0.25} p_{50.5} \times{ }_{50.75} V \\ & (10,000+750)(1+0.05)^{0.25}=1,000,000 \times\left(1-\frac{(1-0.75 \times 0.01)}{(1-0.5 \times 0.01)}\right)+\left(\frac{(1-0.75 \times 0.01)}{(1-0.5 \times 0.01)}\right) \times{ }_{50.75} V \\ & { }_{50.75} V=8,390 \end{aligned} [[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00