Revision as of 03:06, 20 January 2024 by Admin (Created page with "'''Answer: A''' If <math>G</math> denotes the gross premium, then <math <math display="block"> G=\frac{1000 A_{35}+30 \ddot{a}_{35}+270}{0.96 \ddot{a}_{35}-0.26}=\frac{1000(0.09653)+30(18.9728)+270}{0.96(18.9728)-0.26}=52.12 </math> So that, <math <math display="block"> \begin{aligned} & R=1000 A_{36}+(30-0.96 G) \ddot{a}_{36} \\ & \quad=1000(0.10101)+(30-0.96 \times 52.12)(18.8788)=-277.23 \end{aligned} </math> Note that <math>S=0</math> as per definition of...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Jan 20'24

Answer

Answer: A

If [math]G[/math] denotes the gross premium, then


[[math]] G=\frac{1000 A_{35}+30 \ddot{a}_{35}+270}{0.96 \ddot{a}_{35}-0.26}=\frac{1000(0.09653)+30(18.9728)+270}{0.96(18.9728)-0.26}=52.12 [[/math]]


So that,


[[math]] \begin{aligned} & R=1000 A_{36}+(30-0.96 G) \ddot{a}_{36} \\ & \quad=1000(0.10101)+(30-0.96 \times 52.12)(18.8788)=-277.23 \end{aligned} [[/math]]


Note that [math]S=0[/math] as per definition of FPT reserve.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00