Revision as of 03:07, 20 January 2024 by Admin (Created page with "'''Answer: D''' We have Present Value of Modified Premiums <math>=</math> Present Value of level net premiums <math>v q_{x}+\beta\left(\ddot{a}_{25: \overline{20}}-1\right)+P \cdot{ }_{20} E_{25} \cdot \ddot{a}_{45: \overline{20}}=P \ddot{a}_{25: 40}</math> <math>\Rightarrow \beta=\frac{P\left(\ddot{a}_{25: \overline{40}}\right)-P \cdot{ }_{20} E_{25} \cdot \ddot{a}_{45: \overline{20}}-v q_{x}}{\ddot{a}_{25: 20 \mid}-1}=\frac{P \ddot{a}_{25: \overline{20}}-v q_{x}}{\d...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Jan 20'24

Answer

Answer: D

We have Present Value of Modified Premiums [math]=[/math] Present Value of level net premiums

[math]v q_{x}+\beta\left(\ddot{a}_{25: \overline{20}}-1\right)+P \cdot{ }_{20} E_{25} \cdot \ddot{a}_{45: \overline{20}}=P \ddot{a}_{25: 40}[/math]

[math]\Rightarrow \beta=\frac{P\left(\ddot{a}_{25: \overline{40}}\right)-P \cdot{ }_{20} E_{25} \cdot \ddot{a}_{45: \overline{20}}-v q_{x}}{\ddot{a}_{25: 20 \mid}-1}=\frac{P \ddot{a}_{25: \overline{20}}-v q_{x}}{\ddot{a}_{25: 20 \mid}-1}[/math]

We are given that [math]P=0.0216[/math]

[math]\Rightarrow \beta=\frac{0.0216(11.087)-(1.04)^{-1}(0.005)}{11.087-1}=0.023265[/math]

For insurance of [math]10,000, \beta=233[/math].

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00