Revision as of 03:09, 20 January 2024 by Admin (Created page with "'''Answer: D''' <math>{ }_{1} V=\left({ }_{0} V+P\right)(1+i)-\left(25,000+{ }_{1} V-{ }_{1} V\right) q_{x}=P(1+i)-(25,000) q_{x}</math> <math>{ }_{2} V=\left({ }_{1} V+P\right)(1+i)-\left(50,000+{ }_{2} V-{ }_{2} V\right) q_{x+1}=50,000</math> <math>\left(\left(P(1+i)-25,000 q_{x}\right)+P\right)(1+i)-50,000 q_{x+1}=50,000</math> <math>((P(1.05)-25,000(0.15))+P)(1.05)-50,000(0.15)=50,000</math> Solving for <math>P</math>, we get <math>P=\frac{61,437.50}{2.1525}=28...")
Exercise
ABy Admin
Jan 20'24
Answer
Answer: D
[math]{ }_{1} V=\left({ }_{0} V+P\right)(1+i)-\left(25,000+{ }_{1} V-{ }_{1} V\right) q_{x}=P(1+i)-(25,000) q_{x}[/math]
[math]{ }_{2} V=\left({ }_{1} V+P\right)(1+i)-\left(50,000+{ }_{2} V-{ }_{2} V\right) q_{x+1}=50,000[/math]
[math]\left(\left(P(1+i)-25,000 q_{x}\right)+P\right)(1+i)-50,000 q_{x+1}=50,000[/math]
[math]((P(1.05)-25,000(0.15))+P)(1.05)-50,000(0.15)=50,000[/math]
Solving for [math]P[/math], we get
[math]P=\frac{61,437.50}{2.1525}=28,542.39[/math]