Exercise
Answer
Answer: E
[math]V_{10}=2,290=B\left(1-\frac{\ddot{a}_{x+10}}{\ddot{a}_{x}}\right)=B\left(1-\frac{11.4}{14.8}\right) \Rightarrow B=9,968.24[/math]
[math]G \ddot{a}_{x}=25+5 \ddot{a}_{x}+B \times A_{x}[/math]
[math]A_{x}=1-d \ddot{a}_{x}=1-\left(\frac{0.04}{1.04} \times 14.8\right)=0.430769231[/math]
[math]G \times 14.8=25+5 \times 14.8+9,968.24 \times 0.430769231[/math]
[math]\Rightarrow G=296.82[/math]
[math]{ }_{10} V^{g}=9,968.24 A_{x+10}+5 \ddot{a}_{x+10}-296.82 \ddot{a}_{x+10}[/math]
[math]A_{x+10}=1-d \ddot{a}_{x+10}=1-\left(\frac{0.04}{1.04} \times 11.4\right)=0.561538462[/math]
[math]{ }_{10} V^{g}=9,968.24 \times 0.561538462+5 \times 11.4-296.82 \times 11.4[/math]
[math]\Rightarrow{ }_{10} V^{g}=2,270.80[/math]
Alternatively, the expense net premium is based on the extra expenses in year 1, so [math]P^{e}=(30-5) / 14.8=1.68919[/math]
[math]{ }_{10} V^{e}=0-1.68919(11.4)=-19.26[/math]
[math]{ }_{10} V^{g}={ }_{10} V^{n}+{ }_{10} V^{e}=2290-19.26=2270.74[/math]