Revision as of 03:15, 20 January 2024 by Admin (Created page with "'''Answer: A''' The policy value at duration 2 is <math>{ }_{2} V^{\mathrm{mod}}=1000 A_{62}-\left(P^{\bmod }\right)\left(\ddot{a}_{62}\right)=0</math> <math>P^{\mathrm{mod}}=1000 A_{62} / \ddot{a}_{62}=1000(0.31495) / 14.3861=21.89</math> <math>{ }_{5} V^{\mathrm{mod}}=1000 A_{65}-\left(P^{\mathrm{mod}}\right)\left(\ddot{a}_{65}\right)=1000(0.35477)-21.89(13.5498)=58</math> {{soacopyright|2024}}")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Jan 20'24

Answer

Answer: A

The policy value at duration 2 is [math]{ }_{2} V^{\mathrm{mod}}=1000 A_{62}-\left(P^{\bmod }\right)\left(\ddot{a}_{62}\right)=0[/math]

[math]P^{\mathrm{mod}}=1000 A_{62} / \ddot{a}_{62}=1000(0.31495) / 14.3861=21.89[/math]

[math]{ }_{5} V^{\mathrm{mod}}=1000 A_{65}-\left(P^{\mathrm{mod}}\right)\left(\ddot{a}_{65}\right)=1000(0.35477)-21.89(13.5498)=58[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00