Classification of states
From now on we will only use the canonical Markov chain. Recall that for [math]x\in E[/math] we have
Let [math]x\in E[/math]. Then we have two situations, which can occur.
- [math]\p_x[H_x \lt \infty]=1[/math] and [math]N_x=\infty[/math] [math]\p_x[/math]-a.s. In this case [math]x[/math] is said to be reccurrent.
- [math]\p_x[H_x \lt \infty] \lt 1[/math] and [math]N_x \lt \infty[/math] [math]\p_x[/math]-a.s. More precisely
[[math]] \E_x[N_x]=\frac{1}{\p_x[H_x \lt \infty]} \lt \infty. [[/math]]In this case [math]x[/math] is said to be transient.
For [math]k\geq 1[/math], it follows from the strong Markov property that
The potential kernel of the chain is given by the function
The following hold.
- For all [math]x,y\in E[/math] we have
[[math]] U(x,y)=\sum_{n\geq 0}Q_n(x,y). [[/math]]
- [math]U(x,x)=\infty[/math] if and only if [math]x[/math] is recurrent.
- For all [math]x,y\in E[/math] it follows that if [math]x\not=y[/math] then
[[math]] U(x,y)=\p_x[H_y \lt \infty]U(y,y). [[/math]]
We need to show all three points.
- Note that
[[math]] U(x,y)=\E_x\left[\sum_{n\geq 0}\one_{\{N_x=y\}}\right]=\sum_{n\geq 0}\p_x[X_n=y]=\sum_{n\geq 0}Q_n(x,y). [[/math]]
- Exercise.
- This follows from the strong Markov property. We get
[[math]] \E_x[N_y]=\E_x[\one_{\{H_y \lt \infty\}}N_y\circ\Theta_{H_y}]=\E_x[\one_{\{H_y \lt \infty\}}\E_y[N_y]]=\p_x[H_y \lt \infty]U(y,y). [[/math]]
Example
Let us consider the Markov chain, starting at 0, on [math]\mathbb{Z}^d[/math] with transition matrix given by
This Markov chain has the same distribution as [math](Y_n^1,...,Y_n^d)_{n\geq 0}[/math], where [math]Y^1,...,Y^d[/math] are iid r.v.'s of a simple random walk on [math]\mathbb{Z}[/math], starting at 0. Hence we get
Moreover, [math]\p[Y_n^1=0]=0[/math] if [math]n[/math] is odd and for [math]n=2k[/math] we get
Therefore we get that
Now with Stirling's formula[a] we get
Consequently, 0 is recurrent if [math]d=1[/math] and transient if [math]d\geq 2[/math].
Now let us denote the set of all recurrent points by [math]R[/math]. Then we can obtain the following lemma.
Let [math]x\in R[/math] and let [math]y\in E[/math] such that [math]U(x,y) \gt 0[/math]. Then [math]y\in R[/math] and
Let us first show that [math]\p_y[H_x \lt \infty]=1[/math]. We have that
Then [math]U(x,y) \gt 0[/math] implies that [math]\p_x[H_y \lt \infty] \gt 0[/math] and thus [math]\p_y[H_x=\infty]=0[/math]. Hence we can find [math]n_1,n_2\geq 1[/math] such that
Then for all [math]p\geq 0[/math] we get that
and thus we have
since [math]x\in R[/math].
The above lemma has the following important consequence. If [math]x\in R[/math] and [math]y\in E\setminus R[/math], then [math]U(x,y)=0[/math], which means that one cannot go from a recurrent point to a transient point.
Let [math]R[/math] be the set of all recurrent points and let [math]N_x[/math] be defined as above. Then there exists a partition of [math]R[/math], denoted [math](R_i)_{i\in I}[/math] for some index set [math]I[/math], i.e.
- If [math]x\in R[/math] and [math]i\in I[/math] such that [math]x\in R_i[/math], we get that \begin{itemize
- [math]N_y=\infty[/math], [math]\p_x[/math]-a.s. for all [math]y\in R_i[/math],
- [math]N_y=0[/math], [math]\p_x[/math]-a.s. for all [math]y\in E\setminus R_i[/math].} \end{itemize}
- If [math]x\in E\setminus R[/math] and [math]T=\inf\{n\geq 0\mid X_n\in R\}[/math], we get that \begin{itemize
- [math]T=\infty[/math] and [math]N_y \lt \infty[/math], [math]\p_x[/math]-a.s. for all [math]y\in E[/math],
- [math]T \lt \infty[/math] and then there exists [math]j\in I[/math] such that for all [math]n\geq T[/math] we get [math]X_n\in R_j[/math], [math]\p_x[/math]-a.s.} \end{itemize}
For [math]x,y\in R[/math], let us note [math]x\sim Y[/math] if [math]U(x,y) \gt 0[/math]. It follows from lemma 3.3. that this is an equivalence relation[b] on [math]R[/math]. Let [math]i\in I[/math] and [math]x\in R_i[/math]. We have that [math]U(x,y)=0[/math] for all [math]y\in E\setminus R_i[/math] and hence [math]N_y=0[/math], [math]\p_x[/math]-a.s. for all [math]y\in E\setminus R_i[/math]. If [math]y\in R_i[/math], we have from lemma 3.3. that [math]\p_x[H_y \lt \infty]=1[/math] and it follows from the strong Markov property that
A chain is called irreducible if [math]U(x,y) \gt 0[/math] for all [math]x,y\in E[/math].
If the chain is irreducible, then the following hold.
- Either all states are recurrent and there exists a recurrent chain and for all [math]x\in E[/math] we get
[[math]] \p_x[N_y=\infty, \forall y\in E]=1, [[/math]]
- or all states are transient and then for all [math]x\in E[/math] we get
[[math]] \p_x[N_y \lt \infty,\forall y\in E]=1. [[/math]]Moreover, if [math]\vert E\vert \lt \infty[/math], then only the first case can occur.
If there exists a recurrent state, the lemma 3.3. shows that all states are recurrent with [math]U(x,y) \gt 0[/math] for all [math]x,y\in E[/math] and there is only one recurrent chain. If [math]\vert E\vert \lt \infty[/math] and if all states are transient, then we get [math]\p_x[/math]-a.s. that
Example
Let us first recall that the results obtained for the canonical Markov chain hold for any arbitrary Markov chain. Now let [math](Y_n)_{n\geq 0}[/math] be a Markov chain with transition matrix [math]Q[/math]. For instance, if [math]Y_0=y[/math] and [math]N_x^Y=\sum_{n\geq0} \one_{\{ Y-n=x\}}[/math], we have for that [math]k\in\bar\N[/math]
since the left hand side is [math]\p[(Y_n)_{n\geq 0}\in B][/math] with [math]B:=\{\omega\in E^\N\mid N_x(\omega)=k\}[/math].
Let [math](\xi_j)_{j\geq 1}[/math] be iid r.v.'s having the law [math]\mu[/math] with [math]\xi_j\in\mathbb{Z}[/math] for all [math]j\geq 1[/math] and assume that [math]\E[\vert\xi_1\vert] \lt \infty[/math] and [math]m=\E[\xi_1][/math]. Moreover, set [math]Y_n=Y_0+\sum_{j=1}^n\xi_j[/math]. Then
- if [math]m\not=0[/math], then all states are transient.
- if [math]m=0[/math], then all states are recurrent. Moreover, the chain is irreducible if and only if the subgroup given by [math]\{y\in\mathbb{Z}\mid \mu(y) \gt 0\}[/math] is in [math]\mathbb{Z}[/math].
We need to show both points.
- If [math]m\not=0[/math], we know from the strong law of large numbers that [math](Y_n)\xrightarrow{n\to\infty\atop a.s.}\infty[/math] and hence all states are transient.
- Assume [math]m=0[/math] and [math]0[/math] is transient. Thus [math]U(0,0) \lt \infty[/math]. We can assume that [math]Y_0=0[/math]. For [math]x\in\mathbb{Z}[/math] we get
[[math]] U(0,x)\leq U(x,x)=U(0,0). [[/math]]Therefore we get that for all [math]n\geq 1[/math][[math]] \sum_{\vert x\vert\leq n}U(0,x)\leq (2n+1)U(0,0)\leq Cn, [[/math]]where [math]C=3 U(0,0)[/math]. Moreover, by the law of large numbers, there exists some [math]N[/math] sufficiently large such that for all [math]n\geq N[/math][[math]] \p[\vert Y_n\vert\leq \varepsilon n] \gt Y_2 [[/math]]with [math]\varepsilon=\frac{1}{6C}[/math], or equivalently[[math]] \sum_{\vert x\vert\leq \varepsilon n}Q_n(0,x)\geq \frac{1}{2}. [[/math]]If [math]p\geq n\geq N[/math], then[[math]] \sum_{\vert x\vert\leq \varepsilon n}Q_p(0,x)\geq \sum_{\vert x\vert\leq \varepsilon p}Q_p(0,x) \gt \frac{1}{2}, [[/math]]and by summing over [math]p[/math], we get[[math]] \sum_{\vert x\vert\leq \varepsilon n}U(0,n)\geq \sum_{p=N}^n\sum_{\vert x\vert\leq \varepsilon p}Q_p(0,x) \gt \frac{n-N}{\varepsilon}. [[/math]]But if [math]\varepsilon n\geq 1[/math], then[[math]] \sum_{\vert x\vert\leq \varepsilon n}U(0,x)\leq C\varepsilon n=\frac{n}{6}, [[/math]]which leads to a contradiction for [math]n[/math] sufficiently large. For the last statement, write [math]G=\langle x\in\mathbb{Z}\mid \mu(x) \gt 0\rangle[/math]. Then, since [math]Y_0=0[/math], we get[[math]] \p[Y_n\in G\mid \forall n\in \N]=1. [[/math]]If [math]G\not=\mathbb{Z}[/math], then obviously [math](Y_n)_{n\geq 0}[/math] is irreducible. If [math]G=\mathbb{Z}[/math], then write[[math]] H:=\{x\in\mathbb{Z}\mid U(0,x) \gt 0\}. [[/math]]It follows that [math]H[/math] is a subgroup of [math]\mathbb{Z}[/math], indeed, for [math]x,y\in H[/math], we get that[[math]] Q_{n+p}(0,x+y)\geq Q_n(0,x)Q_p(x,x+y)=Q_n(0,x)Q_p(0,y), [[/math]]and thus we get that [math]x+y\in H[/math]. For [math]x\in H[/math] and with [math]0[/math] being recurrent, we get that [math]U(0,x) \gt 0[/math] implies that [math]U(x,x) \gt 0[/math] and therefore [math]U(x,0)=U(0,-x)[/math], which implies that [math]-x\in H[/math]. Now since [math]H\supset\{ x\in\mathbb{Z}\mid \mu(x) \gt 0\}[/math], we get that [math]H=\mathbb{Z}[/math] and the claim follows.
Example
Let [math]\mu=\frac{1}{2}\delta_{-2}+\frac{1}{2}\delta_{2}[/math]. Then all states are recurrent but there are two recurrence classes.
Random variable on a graph
Assume that [math]\vert E\vert \lt \infty[/math]. Moreover, let [math]A\subset\mathcal{P}(E)[/math] and for [math]x\in E[/math] let
A graph [math]\mathcal{G}[/math] is said to be connected if every pair of vertices in the graph is connected.
General references
Moshayedi, Nima (2020). "Lectures on Probability Theory". arXiv:2010.16280 [math.PR].