Revision as of 23:52, 1 June 2022 by Admin (Created page with "Let <math>X,Y</math> be any two random variables. Which of the following statements is always true: <ol style="list-style-type:upper-alpha"> <li><math>|\operatorname{Cov}(X,Y...")
ABy Admin
Jun 02'22
Exercise
Let [math]X,Y[/math] be any two random variables. Which of the following statements is always true:
- [math]|\operatorname{Cov}(X,Y)| \lt |\operatorname{Cov}(\operatorname{E}[X | Y],Y)|[/math]
- [math]|\operatorname{Cov}(X,Y)| \gt |\operatorname{Cov}(\operatorname{E}[X | Y],Y)|[/math]
- [math]\operatorname{Cov}(X,Y) = \operatorname{Cov}(\operatorname{E}[X | Y],Y)[/math]
- If [math]\operatorname{Cov}(\operatorname{E}[X | Y],Y) = 0[/math] then [math]X [/math] and [math]Y[/math] are independent.
- If [math]\operatorname{Cov}(X,Y) = \operatorname{Cov}(\operatorname{E}[X | Y],Y)[/math] for every [math]Y[/math] then [math]X = \operatorname{E}[X | Y][/math].