Revision as of 01:17, 2 June 2024 by Admin
BBy Bot
May 31'24
Exercise
[math]
\newcommand{\smallfrac}[2]{\frac{#1}{#2}}
\newcommand{\medfrac}[2]{\frac{#1}{#2}}
\newcommand{\textfrac}[2]{\frac{#1}{#2}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\e}{\operatorname{e}}
\newcommand{\B}{\operatorname{B}}
\newcommand{\Bbar}{\overline{\operatorname{B}}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
\newcommand{\E}{\operatorname{E}}
\newcommand{\V}{\operatorname{V}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\card}{\#}
\renewcommand{\P}{\operatorname{P}}
\renewcommand{\L}{\operatorname{L}}
\newcommand{\mathds}{\mathbb}[/math]
(‘naive exponential estimate’) Let [math]Y_1,\dots,Y_d[/math] be independent random variables and assume that [math]|\E(Y_i^k)|\leqslant k![/math] holds for all [math]k\geqslant0[/math] and [math]i=1,\dots,d[/math].
- Use the series expansion of [math]\exp(\cdot)[/math] and the assumption to get
[[math]] \E(\exp(tY_i))\leqslant \Bigsum{k=0}{\infty}t^k=\left\{\begin{array}{cl}\textfrac{1}{1-t} &\text{ for } t\in(-1,1),\\\infty & \text{otherwise.}\end{array}\right. [[/math]]
- Show by means of calculus that
[[math]] \inf_{t\in(0,1)}\exp(-ta)\prod_{i=1}^d\smallfrac{1}{1-t}=\left\{\begin{array}{cl}(\textfrac{a}{d})^d\exp(d-a) &\text{ if } a \gt d,\\ 1 & \text{otherwise.}\end{array}\right. [[/math]]
- Derive an estimate for [math]\P\bigl[|Y_1+\cdots+Y_d|\geqslant a\bigr][/math] from the above.
- Compare the bound in (iii) with the bound of Theorem.