Revision as of 02:11, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Another well-known gambling system is the ''martingale doubling system''. Suppose that you are betting on red to turn up in roulette. Every time you win, bet 1 dollar next time. Every time you lose, double your previous bet. Suppose that you...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Another well-known gambling system is the martingale doubling system.
Suppose that you are betting on red to turn up in roulette. Every time you win, bet 1 dollar next time. Every time you lose, double your previous bet. Suppose that you use this system until you have won at least 5 dollars or you have lost more than 100 dollars. Write a program to simulate this and play it a number of times and see how you do. In his book The Newcomes, W. M. Thackeray remarks “You have not played as yet? Do not do so; above all avoid a martingale if you do.”[Notes 1] Was this good advice?
Notes