Revision as of 02:12, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with distribution function <math>m_X(x)</math> defined by <math display="block"> m_X(-1) = 1/5,\ \ m_X(0) = 1/5,\ \ m_X(1) = 2/5,\ \ m_X(2) = 1/5\ . </math> <ul><li> Let <math>Y</math> be the random varia...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]X[/math] be a random variable with distribution function
[math]m_X(x)[/math] defined by
[[math]]
m_X(-1) = 1/5,\ \ m_X(0) = 1/5,\ \ m_X(1) = 2/5,\ \ m_X(2) = 1/5\ .
[[/math]]
- Let [math]Y[/math] be the random variable defined by the equation [math]Y = X + 3[/math]. Find the distribution function [math]m_Y(y)[/math] of [math]Y[/math].
- Let [math]Z[/math] be the random variable defined by the equation [math]Z = X^2[/math]. Find the distribution function [math]m_Z(z)[/math] of [math]Z[/math].