Revision as of 02:12, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> <ul><li> For events <math>A_1</math>, \dots, <math>A_n</math>, prove that <math display="block"> P(A_1 \cup \cdots \cup A_n) \leq P(A_1) + \cdots + P(A_n)\ . </math> </li> <li> For events <math>A</math> and <math>B</math>, prove that <math disp...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]
  • For events [math]A_1[/math], \dots, [math]A_n[/math], prove that
    [[math]] P(A_1 \cup \cdots \cup A_n) \leq P(A_1) + \cdots + P(A_n)\ . [[/math]]
  • For events [math]A[/math] and [math]B[/math], prove that
    [[math]] P(A \cap B) \geq P(A) + P(B) - 1. [[/math]]