Revision as of 02:12, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>\Omega</math> be the sample space <math display="block"> \Omega = \{0,1,2,\dots\}\ , </math> and define a distribution function by <math display="block"> m(j) = (1 - r)^j r\ , </math> for some fixed <math>r</math>, <math>0 < r < 1...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Let [math]\Omega[/math] be the sample space

[[math]] \Omega = \{0,1,2,\dots\}\ , [[/math]]

and define a distribution function by

[[math]] m(j) = (1 - r)^j r\ , [[/math]]

for some fixed [math]r[/math], [math]0 \lt r \lt 1[/math], and for [math]j = 0, 1, 2, \ldots[/math]. Show that this is a distribution function for [math]\Omega[/math].