Revision as of 03:14, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> For the task described in Exercise Exercise, it can be shown<ref group="Notes" >E. B. Dynkin and A. A. Yushkevich, ''Markov Processes: Theorems and Problems,'' trans. J. S. Wood (New York: Plenum, 1969).</ref> that the bes...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

For the task described in Exercise Exercise, it can

be shown[Notes 1] that the best strategy is to pass over the first [math]k - 1[/math] candidates where [math]k[/math] is the smallest integer for which

[[math]] \frac 1k + \frac 1{k + 1} + \cdots + \frac 1{n - 1} \leq 1\ . [[/math]]

Using this strategy the probability of getting the best candidate is approximately [math]1/e = .368[/math]. Write a program to simulate Barbara Smith's interviewing if she uses this optimal strategy, using [math]n = 10[/math], and see if you can verify that the probability of success is approximately [math]1/e[/math].

Notes

  1. E. B. Dynkin and A. A. Yushkevich, Markov Processes: Theorems and Problems, trans. J. S. Wood (New York: Plenum, 1969).