Revision as of 02:14, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> For the task described in Exercise Exercise, it can be shown<ref group="Notes" >E. B. Dynkin and A. A. Yushkevich, ''Markov Processes: Theorems and Problems,'' trans. J. S. Wood (New York: Plenum, 1969).</ref> that the bes...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
For the task described in Exercise Exercise, it can
be shown[Notes 1] that the best strategy is to pass over the first [math]k - 1[/math] candidates where [math]k[/math] is the smallest integer for which
[[math]]
\frac 1k + \frac 1{k + 1} + \cdots + \frac 1{n - 1} \leq 1\ .
[[/math]]
Using this strategy the probability of getting the best candidate is approximately [math]1/e = .368[/math]. Write a program to simulate Barbara Smith's interviewing if she uses this optimal strategy, using [math]n = 10[/math], and see if you can verify that the probability of success is approximately [math]1/e[/math].
Notes