Revision as of 02:15, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Show that <math display="block"> b(n,p,j) = \frac pq \left(\frac {n - j + 1}j \right) b(n,p,j - 1)\ , </math> for <math>j \ge 1</math>. Use this fact to determine the value or values of <math>j</math> which give <math>b(n,p,j)</math> its greatest...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Show that
[[math]]
b(n,p,j) = \frac pq \left(\frac {n - j + 1}j \right) b(n,p,j - 1)\ ,
[[/math]]
for [math]j \ge 1[/math]. Use this fact to determine the value or values of [math]j[/math] which give [math]b(n,p,j)[/math] its greatest value. Hint: Consider the successive ratios as [math]j[/math] increases.