Revision as of 02:16, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Show that if we start with the identity ordering of <math>\{1, 2, \ldots, n\}</math>, then the probability that an <math>a</math>-shuffle leads to an ordering with exactly <math>r</math> rising sequences equals <math display="block"> {{{n + a - r...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Show that if we start with the identity ordering of [math]\{1, 2, \ldots, n\}[/math], then the probability that an [math]a[/math]-shuffle leads to an ordering with

exactly [math]r[/math] rising sequences equals

[[math]] {{{n + a - r}\choose{n}}\over{a^n}}A(n, r)\ , [[/math]]

for [math]1 \le r \le a[/math].