Revision as of 02:16, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> denote a particular process that produces elements of <math>S_n</math>, and let <math>U</math> denote the uniform process. Let the distribution functions of these processes be denoted by <math>f_X</math> and <math>u</math>, res...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]X[/math] denote a particular process that produces elements of
[math]S_n[/math], and let [math]U[/math] denote the uniform process. Let the distribution functions of these processes be denoted by [math]f_X[/math] and [math]u[/math], respectively. Show that the variation distance \newline [math]\parallel f_X - u\parallel[/math] is equal to
[[math]]
\max_{T \subset S_n} \sum_{\pi \in T} \Bigl(f_X(\pi) - u(\pi)\Bigr)\ .
[[/math]]
Hint: Write the permutations in [math]S_n[/math] in decreasing order of the difference [math]f_X(\pi) - u(\pi)[/math].