Revision as of 02:19, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Suppose that <math>X</math> and <math>Y</math> are continuous random variables with density functions <math>f_X(x)</math> and <math>f_Y(y)</math>, respectively. Let <math>f(x, y)</math> denote the joint density function of <math>(X, Y)</math>....")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Suppose that [math]X[/math] and [math]Y[/math] are continuous random variables with
density functions [math]f_X(x)[/math] and [math]f_Y(y)[/math], respectively. Let [math]f(x, y)[/math] denote the joint density function of [math](X, Y)[/math]. Show that
[[math]]
\int_{-\infty}^\infty f(x, y)\, dy = f_X(x)\ ,
[[/math]]
and
[[math]]
\int_{-\infty}^\infty f(x, y)\, dx = f_Y(y)\ .
[[/math]]