Revision as of 02:19, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>n</math> be a positive integer. Let <math>S</math> be the set of integers between 1 and <math>n</math>. Consider the following process: We remove a number from <math>S</math> at random and write it down. We repeat this until <math>S<...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Let [math]n[/math] be a positive integer. Let [math]S[/math] be the set of

integers between 1 and [math]n[/math]. Consider the following process: We remove a number from [math]S[/math] at random and write it down. We repeat this until [math]S[/math] is empty. The result is a permutation of the integers from 1 to [math]n[/math]. Let [math]X[/math] denote this permutation. Is [math]X[/math] uniformly distributed?