Revision as of 02:21, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Suppose that in the hypergeometric distribution, we let <math>N</math> and <math>k</math> tend to <math>\infty</math> in such a way that the ratio <math>k/N</math> approaches a real number <math>p</math> between 0 and 1. Show that the hypergeome...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Suppose that in the hypergeometric distribution, we let

[math]N[/math] and [math]k[/math] tend to [math]\infty[/math] in such a way that the ratio [math]k/N[/math] approaches a real number [math]p[/math] between 0 and 1. Show that the hypergeometric distribution tends to the binomial distribution with parameters [math]n[/math] and [math]p[/math].