Revision as of 02:23, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable which is Poisson distributed with parameter <math>\lambda</math>. Show that <math>E(X) = \lambda</math>. '' Hint'': Recall that <math display="block"> e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cd...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Let [math]X[/math] be a random variable which is

Poisson distributed with parameter [math]\lambda[/math]. Show that [math]E(X) = \lambda[/math]. Hint: Recall that

[[math]] e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\,. [[/math]]