Revision as of 02:24, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> You place a 1-dollar bet on the number 17 at Las Vegas, and your friend places a 1-dollar bet on black (see Exercises.\ref{exer 1.1.6} [[guide:4f3a4e96c3#sec 1.1 |and.]]). Let <math>X...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
You place a 1-dollar bet on the number 17 at Las Vegas, and
your friend places a 1-dollar bet on black (see Exercises.\ref{exer 1.1.6} [[guide:4f3a4e96c3#sec 1.1 |and.]]). Let [math]X[/math] be your winnings and [math]Y[/math] be her winnings. Compare [math]E(X)[/math], [math]E(Y)[/math], and [math]V(X)[/math], [math]V(Y)[/math]. What do these computations tell you about the nature of your winnings if you and your friend make a sequence of bets, with you betting each time on a number and your friend betting on a color?