Revision as of 02:24, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Show that, for the sample mean <math>\bar x</math> and sample variance <math>s^2</math> as defined in Exercise Exercise, <ul><li> <math>E(\bar x) = \mu</math>. </li> <li> <math>E\bigl((\bar x - \mu)^2\bigr) = \sigma^2/n</m...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Show that, for the sample mean [math]\bar x[/math] and sample
variance [math]s^2[/math] as defined in Exercise Exercise,
- [math]E(\bar x) = \mu[/math].
- [math]E\bigl((\bar x - \mu)^2\bigr) = \sigma^2/n[/math].
- [math]E(s^2) = \frac {n-1}n\sigma^2[/math]. Hint: For (c) write
[[math]] \begin{eqnarray*} \sum_{i = 1}^n (x_i - \bar x)^2 & = & \sum_{i = 1}^n \bigl((x_i - \mu) - (\bar x - \mu)\bigr)^2 \\ & = & \sum_{i = 1}^n (x_i - \mu)^2 - 2(\bar x - \mu) \sum_{i = 1}^n (x_i - \mu) + n(\bar x - \mu)^2 \\ & = & \sum_{i = 1}^n (x_i - \mu)^2 - n(\bar x - \mu)^2, \end{eqnarray*} [[/math]]and take expectations of both sides, using part (b) when necessary.
- Show that if, in the definition of [math]s^2[/math] in Exercise Exercise, we replace the coefficient [math]1/n[/math] by the coefficient [math]1/(n-1)[/math], then [math]E(s^2) = \sigma^2[/math]. (This shows why many statisticians use the coefficient [math]1/(n-1)[/math]. The number [math]s^2[/math] is used to estimate the unknown quantity [math]\sigma^2[/math]. If an estimator has an average value which equals the quantity being estimated, then the estimator is said to be unbiased. Thus, the statement [math]E(s^2) = \sigma^2[/math] says that [math]s^2[/math] is an unbiased estimator of [math]\sigma^2[/math].)