Revision as of 02:26, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> <ul><li> A die is rolled three times with outcomes <math>X_1</math>, <math>X_2</math>, and <math>X_3</math>. Let <math>Y_3</math> be the maximum of the values obtained. Show that <math display="block"> P(Y_3 \leq j) = P(X_1 \leq j)^3\ . </math...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
- A die is rolled three times with outcomes [math]X_1[/math], [math]X_2[/math], and [math]X_3[/math]. Let
[math]Y_3[/math] be the maximum of the values obtained. Show that
[[math]] P(Y_3 \leq j) = P(X_1 \leq j)^3\ . [[/math]]Use this to find the distribution of [math]Y_3[/math]. Does [math]Y_3[/math] have a bell-shaped distribution?
- Now let [math]Y_n[/math] be the maximum value when [math]n[/math] dice are rolled. Find the distribution of [math]Y_n[/math]. Is this distribution bell-shaped for large values of [math]n[/math]?