Revision as of 02:26, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> and <math>Y</math> be independent random variables defined on the space <math>\Omega</math>, with density functions <math>f_X</math> and <math>f_Y</math>, respectively. Suppose that <math>Z = X + Y</math>. Find the density <ma...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]X[/math] and [math]Y[/math] be independent random variables defined
on the space [math]\Omega[/math], with density functions [math]f_X[/math] and [math]f_Y[/math], respectively. Suppose that [math]Z = X + Y[/math]. Find the density [math]f_Z[/math] of [math]Z[/math] if
-
[[math]] f_X(x) = f_Y(x) = \left \{ \begin{array}{ll} 1/2, & \;\mbox{if $-1 \leq x \leq +1,$} \\ 0, & \;\mbox{otherwise.} \end{array} \right. [[/math]]
-
[[math]] f_X(x) = f_Y(x) = \left \{ \begin{array}{ll} 1/2, & \;\mbox{if $3 \leq x \leq 5,$} \\ 0, & \;\mbox{otherwise.} \end{array} \right. [[/math]]
-
[[math]] f_X(x) = \left \{ \begin{array}{ll} 1/2, & \;\mbox{if $-1 \leq x \leq 1,$} \\ 0, & \;\mbox{otherwise.} \end{array} \right. [[/math]]\smallskip[[math]] f_Y(x) = \left \{ \begin{array}{ll} 1/2, & \;\mbox{if $3 \leq x \leq 5,$} \\ 0, & \;\mbox{otherwise.} \end{array} \right. [[/math]]
- What can you say about the set [math]E = \{\,z : f_Z(z) \gt 0\,\}[/math] in each case?