Revision as of 02:26, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Suppose that <math>R^2 = X^2 + Y^2</math>. Find <math>f_{R^2}</math> and <math>f_R</math> if <math display="block"> \begin{eqnarray*} f_X(x) &=& \frac 1{\sqrt{2\pi}\sigma_1} e^{-(x - \mu_1)^2/2\sigma_1^2} \\ f_Y(x) &=& \frac 1{\sqrt{2\pi}\sigma_...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Suppose that [math]R^2 = X^2 + Y^2[/math]. Find [math]f_{R^2}[/math] and [math]f_R[/math] if
[[math]]
\begin{eqnarray*}
f_X(x) &=& \frac 1{\sqrt{2\pi}\sigma_1} e^{-(x - \mu_1)^2/2\sigma_1^2} \\
f_Y(x) &=& \frac 1{\sqrt{2\pi}\sigma_2} e^{-(x - \mu_2)^2/2\sigma_2^2}\ .
\end{eqnarray*}
[[/math]]