Revision as of 03:26, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X_1</math>, <math>X_2</math>, \dots, <math>X_n</math> be <math>n</math> independent random variables each of which has an exponential density with mean <math>\mu</math>. Let <math>M</math> be the ''minimum'' value of the <math>X_j</math...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Let [math]X_1[/math], [math]X_2[/math], \dots, [math]X_n[/math] be [math]n[/math] independent random

variables each of which has an exponential density with mean [math]\mu[/math]. Let [math]M[/math] be the minimum value of the [math]X_j[/math]. Show that the density for [math]M[/math] is exponential with mean [math]\mu/n[/math]. Hint: Use cumulative distribution functions.