Revision as of 02:27, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> The ''support'' of a function <math>f(x)</math> is defined to be the set <math display="block"> \{x\ :\ f(x) > 0\}\ . </math> Suppose that <math>X</math> and <math>Y</math> are two continuous random variables with density functions <math>f_X(x...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
The support of a function [math]f(x)[/math] is defined to be the set
[[math]]
\{x\ :\ f(x) \gt 0\}\ .
[[/math]]
Suppose that [math]X[/math] and [math]Y[/math] are two continuous random variables with density functions [math]f_X(x)[/math] and [math]f_Y(y)[/math], respectively, and suppose that the supports of these density functions are the intervals [math][a, b][/math] and [math][c, d][/math], respectively. Find the support of the density function of the random variable [math]X+Y[/math].