Revision as of 02:27, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X_1</math>, <math>X_2</math>, \dots, <math>X_n</math> be a sequence of independent random variables, all having a common density function <math>f_X</math> with support <math>[a,b]</math> (see Exercise Exercise)....")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]X_1[/math], [math]X_2[/math], \dots, [math]X_n[/math] be a sequence of independent random
variables, all having a common density function [math]f_X[/math] with support [math][a,b][/math] (see Exercise Exercise). Let [math]S_n = X_1 + X_2 +\cdots+ X_n[/math], with density function [math]f_{S_n}[/math]. Show that the support of [math]f_{S_n}[/math] is the interval [math][na,nb][/math]. Hint: Write [math]f_{S_n} = f_{S_{n - 1}} * f_X[/math]. Now use Exercise Exercise to establish the desired result by induction.